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We present an analysis of the power fluctuations in the statistical steady state of a passively mode-locked
laser. We use statistical light-mode theory to map this problem to that of fluctuations in a reference equilibrium
statistical physics problem and, in this way, study the fluctuations nonperturbatively. The power fluctuations,
being noncritical, are Gaussian and proportional in amplitude to the inverse square root of the number of
degrees of freedom. We calculate explicit analytic expressions for the covariance matrix of the overall pulse
and cw power variables, providing complete information on the single-time power distribution in the laser, and
derive a set of fluctuation-dissipation relations between them and the susceptibilities of the steady-state

quantities.
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I. INTRODUCTION

Passive mode locking is a ubiquitous tool for creating
ultrashort pulses, whose duration can be as short as a few
femtoseconds. It is achieved by the simple device of placing
a saturable absorber in a multimode laser cavity that effec-
tively amplifies optical waveform regions of high instanta-
neous power, thereby rendering cw waveforms modulation-
ally unstable [1,2]. However, in contrast with dynamical
models of passive mode locking, in experimental systems
with a fast saturable absorber there exists a threshold for
self-starting of mode locking [3,4]. The decohering noise
sources present in the laser cavity are an inevitable impedi-
ment to the dynamical process of pulse buildup [5-8]. There-
fore, the self-starting problem could only be resolved when a
statistical theory of interacting laser light modes subject to
noise was put forward in [9]. In statistical light-mode dy-
namics (SLD) the optical waveform is treated as a random
function, and the mode-locking phenomenology is recovered
as the “thermodynamics” of the SLD system. It can then be
shown [9-11] that the noise injects entropy into the cavity
and that the entropy of the cw state is higher than that of the
mode-locked state. The onset of passive mode locking there-
fore obtains the significance of a first-order phase transition
between the disordered cw phase and the ordered pulse
phase. SLD has been further applied to predict and study
several additional effects in passively mode-locked lasers,
including critical phenomena in light [12], multipulse phase
transitions [13,14], noise-activated mode locking [15], and
mode locking in random lasers [16].

At the same time, noisy models of passive mode locking
were often considered not for the purpose of understanding
the mode-locking transition but to study the temporal fluc-
tuations of the cavity waveform [17]. The presence of cavity
noise perturbs the output of a laser from a perfectly periodic
train of pulses, degrading the pulse-to-pulse coherence, tem-
poral periodicity, and the pulse shape. In applications these
fluctuations are usually obstructive, and one of the main
goals of the study of fluctuations has been to understand how
the fluctuations can be reduced. Recently the importance of
understanding and controlling fluctuations has significantly
increased because the pulse fluctuations are the limiting fac-
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tor in the accuracy of the ultraprecise clocks based on fre-
quency combs [18-20].

The standard theoretical approach to pulse fluctuations is
based on perturbation theory, an apparently reasonable as-
sumption, since the noise power entering the cavity is much
smaller than the coherent power [17,21-24]. However, this
argument is valid only for a single pass (or few passes)
through the amplifier. In a laser that is based on a dynamical
equilibrium and feedback, the noise power accumulates [1]
and can no longer be considered small. In fact a theory of
fluctuations based entirely on perturbation theory can only
capture transients. This difficulty was recently recognized by
Jiang et al. [22] and Menyuk et al. [23] who demonstrated
that the analysis of fluctuations must also take into consider-
ation the gain dynamics. Therefore, a consistent theory of
steady-state pulse fluctuations must include cw power vari-
ables in a statistical framework such as SLD.

The analysis of pulse fluctuations in SLD is quite similar
to that of statistical fluctuations in equilibrium statistical me-
chanics [25]. When there is no broken symmetry, thermody-
namic quantities fluctuate around the equilibrium values. The
distribution of the fluctuations is Gaussian, and their strength
tends to zero in the thermodynamic limit, being inversely
proportional to the square root of the number of degrees of
freedom. Thermodynamic quantities associated with broken
symmetries undergo diffusion whose rate is also inversely
proportional to the number of degrees of freedom. There
exist proportionality relationships (fluctuation-dissipation re-
lations) between correlation functions of the fluctuating
quantities and thermodynamic susceptibility and transport
coefficients. The thermodynamic quantities associated with a
single pulse in a passively mode-locked laser are the pulse
power, frequency, timing, and phase, of which the last two
are symmetry-breaking quantities.

In this paper we focus on the power fluctuations since it is
the pulse power that is directly coupled to the noise power
and entropy through the amplifier gain [1,26,27], and in con-
sequence the power fluctuations exhibit the richest behavior.
The power fluctuations are studied in the framework of a
simplified model of the mode-locking dynamics, where the
cavity is divided into N intervals of the width of a pulse, N
being the number of active modes in the cavity, and each
interval is represented by a single complex degree of free-
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TABLE I. The independent elements of the covariance matrix of the thermodynamic power observables,

2
containing at most 1 cw power factor. The dimensionless entries in the table should be multiplied by % to
obtain the physical values. They are expressed in terms of the two dimensionless parameters 7, the inverse
temperature, and the gain elasticity 7. As 7— , the elements in the first row tend to zero, while those in the

second row have a nonzero limit.
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dom. The model has been introduced and derived from the
Haus master equation in [10], and it has been demonstrated
to yield results that closely approximate those obtained from
the master equation on one hand [11] and have large experi-
mentally predictive content on the other hand [13]. The
model, termed here as the coarse-grained model of passive
mode locking, is defined in Sec. II, its thermodynamic prop-
erties are reviewed, and the thermodynamic power observ-
ables are defined and listed. The expectation values of the
thermodynamic observables define the steady state of the
laser, characterized by the overall power, the pulse power,
and the cw power. The values of the thermodynamic quanti-
ties are calculable from an exact mean-field theory and de-
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. . . P
pend on the single dimensionless parameter y=“, where «

is the absorber nonlinearity, P is the overall cavity power,
and T is the noise power injection rate. In particular the pulse

power is yP, where 0=7< 1 is a function of 7y only. The role
of yin SLD is analogous to inverse temperature in statistical
mechanics, in that the ordering transition occurs, and the
pulse power increases as vy increases [10].

Since the fluctuations are Gaussian, they are completely
defined in terms of the covariance matrix of the thermody-
namic observables, which is calculated explicitly in Sec. III,
the main section of the paper. It is shown that, in addition to
v, the fluctuations depend on a second dimensionless param-

eter 77=1<,)—2T|g’(l_’), where g(P) is the saturated overall net
gain and 7 is a measure of the gain elasticity as it determines
the restoring force of the gain saturation mechanism in es-
tablishing the steady state of the laser. If 7 becomes very
large, the fluctuations in the overall power tend to zero, but
there still remain pulse power fluctuations, as power is ran-
domly passed back and forth between the pulse and the cw
degrees of freedom. The covariance matrix is first derived
directly from the invariant measure. There are in total seven
independent elements in the covariance matrix, and the re-
sults are summarized in Table I (for entries depending at
most on a single cw power observable) and Egs. (16)-(19),
and convey full information on the single-time statistical
properties of the fluctuations. Next, a set of fluctuation-
dissipation relations is derived, which are used to express
several of the covariance matrix elements as derivatives of
steady-state thermodynamic quantities, thereby providing an
independent verification of their values. Finally, the covari-

ance matrix is also calculated in the much simpler case,
where the laser is in the disordered phase, i.e., when it is
operating in cw; there it is shown that the fluctuations do not
depend on 7 so that they are unaffected by the saturable
absorber, in leading order in the thermodynamic limit. Sec-
tion IV presents our conclusions and outlook.

II. COARSE-GRAINED MODEL OF PASSIVE MODE
LOCKING

The effective number of degrees of freedom in a multi-
mode laser cavity is determined by the bandwidth of the gain
medium, which determines the pulse width 7,,. Thus, a cavity
of round-trip time 7 has N=73/ 7, independent degrees of
freedom, which can be thought of as either N Fourier modes
or, in real space, as N independent complex field amplitudes
,, each one representing the average value of the optical
field in an interval of length 7,,.

In this picture statistical light mode dynamics is described
by N coupled ordinary differential equations [9,10]

a
ar¢n=ﬁ|¢n|2¢n+g¢n+rn’ (1)
where « is the coefficient of saturable absorption, g is the
overall net gain, and the I',’s are independent (complex) cen-
tered Gaussian white-noise processes with covariance func-
tions (I, (1)T",,,(¢'))=2T 8(t~1") 5, -

Equation (1) has to be supplemented by an equation that
expresses the gain coefficient in terms of the field variables
using the physical gain saturation mechanism. In the case of
slow gain saturation considered here, the gain coefficient can
be assumed to be a function of the overall power P
=+3,|¢,%. In many studies the gain saturation function is

modeled by g(P)= j:/P;_l (for a constant P,) [1,2]. How-
ever, it is known [2,28] that the mode-locking dynamics with
a |¢f> nonlinearity is globally unstable with this kind of
gain saturation function. Since, furthermore, the steady-state

properties of the optical waveform depend only on the local

behavior of g(P) near the operational power P (defined pre-
cisely below), we will consider an arbitrary gain saturation
function g(P) that is only assumed to have the necessary
properties for a stable mode-locking state to exist; in this
way we gain in generality without complicating the analysis.
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The equations of motion [Eq. (1)] can be written in a
variational form [10]

oH
- - +
a lﬂn

I, = r,, (2)

where H is the Lyapunov functional defined by
o
Hlyl== 50 2 [uh[* + NTu(P), (3)

and u(P) is the dimensionless gain potential, defined by
—NTu'(P)=g(P). As shown in [10], the N scaling of the gain
potential is necessary to obtain a good thermodynamic limit
as N— o,

In this paper we study the steady-state statistical proper-
ties of the SLD coarse-grained model. As a white-noise
forced variational system, system (1) reaches a statistical
steady state with a Gibbs-type distribution,

e—H[¢]/T
= , 4
el Z (4)
where Z is the partition function,
Z= j [dyple™ T, (5)

Steady-state expectation values of field functionals A[ /] are
given as usual by

(A)= J [dylply]ALY]. (6)

This is the starting point for the calculation of the mean
values of macroscopic observables and their (co)variance.
In previous studies [9,10,12,13] the thermodynamics of
this system, i.e., the behavior of macroscopic observables
when N is large, has been studied in detail, and the main
results are as follows: the overall power P is self-averaging

and reaches a value P that is determined by a balance of the
saturable absorption nonlinearity, noise entropy, and gain

saturation. Once P is determined, u(P) plays no further part

in the determination of the thermodynamics. Moreover, P
itself appears in the thermodynamics, except as an overall
power scale, only in the dimensionless combination }/:U‘TP2
that plays here a role similar to inverse temperature in equi-
librium statistical physics. The thermodynamic phase dia-

gram consists of two phases, a mode-locked phase with a
single pulse whose power Py, %Sy< 1, is also self-
averaging in the thermodynamic limit, and a cw phase where
the intracavity power is distributed evenly between all the
degrees of freedom.

The thermodynamics is solvable using an exact mean-
field theory. The mean-field free energy (Landau function) is
(see Sec. V of [10])

FP.y) =257 +10glP(1 =3)] - u(P). )

The value of y for a given overall power is determined by the
equation d,f(P,y)=0 whose solution is
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+ (y>4). (8)

N | —
ENgy—
X |~

y=

Therefore, if only the overall power P is fixed and the pulse
power is let to assume its equilibrium value, the free energy
becomes

#(P) = fLP.y(P)]. )

The steady-state overall power is now determined by the
equation dpp=0 that with Eq. (8) gives

¥y = Pu'(P). (10)

This equation also determines the overall net gain g since u’
is proportional to it. The gain balance requirement is an al-
ternative method for reaching Eq. (10), derived directly from
the mode-locking dynamics [26].

The values of P and y shown above describe a mode-
locked state that exists for every y>4, whose free energy is

F=f£(P,y). In addition, for any vy there exists a cw state that
can be viewed formally as a state with zero-power pulse so
that the mean-field free energy in the cw phase is ¢, (P)
=f(P,0), and the overall power in the cw state is determined

by the condition dp¢,(P.,)=0, that is,

P’ (Pey) =1. (11)

Of the two states, the statistically stable is the one with the
lower free energy and the other is metastable, although in
general its lifetime is very large [15]. The two states ex-
change stability when y= 19", above which the mode-locked
phase becomes stable. y* is always greater than 4, but its
precise value depends on the form of the gain saturation
function u. For very strong gain saturation, i.e., when 7 tends
to infinity, " approaches a value close to 4.91 [10].

The overall pulse and cw power variables are strictly
equal to the thermodynamic quantities shown above only in
the limit N=co. When N is large but finite, their actual values
deviate slightly from the thermodynamics and fluctuate in
time. These fluctuations are observed as a small randomness
in the macroscopic observables. Since the mode system is
not critical, the fluctuation statistics are well-described by a
(multivariate) Gaussian distribution [25]. The nature of the
coarse-grained model and the equilibriumlike approach are
well suited to study the single-time power fluctuations. Since
a macroscopic share of the overall power resides in the cw
background even in the mode-locked phase, the macroscopic
observables include, in addition to P and the pulse power Y,
partial continuum power variables Xa=}v2imewal|zpn 2, where
the sum is taken on an interval containing aN degrees of
freedom, 0<a=1. In the interest of examining continuum
cross correlations we will also define complementary con-
tinuum power variables X, defined similarly to the X, vari-
ables on mutually exclusive intervals of length bN.

The expectation values of all these macroscopic variables
reach finite positive limit,
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(Py=P, (Y)=Py, (X,)=aP(1-7), (12)

as N— o, while their (co)variance are O(1/N), so that the
relative size of the fluctuations is N-? as expected. Our
main result is the derivation of covariance matrix of these
observables, to which we now turn.

III. FLUCTUATION STATISTICS OF THE POWER
OBSERVABLES

A. Covariance matrix in the mode-locked phase

In this section it is assumed that the system is in the
mode-locked phase, that is, there exists a single degree of

freedom whose power is close to NPy, where P and y are the
overall power and relative pulse power in the thermody-
namic limit as defined above. This assumption implies that

y:“TPZ>4. When y<<y" this state is metastable, but except
for parameters very close to the boundary of the pulse sta-
bility region, the metastable state is very long lived and the
fluctuation statistics are well defined.

The elements of the covariance matrix are the second-
order cumulants of the macroscopic observables, i.e., combi-
nations of expectation values (with respect to the invariant
measure p[i]) of the type ((AB))=(AB)—(A)B), where A
and B are two, not necessarily distinct, of the thermodynamic
observables P, Y, X,, and X,; defined above. Using relations
between these observables, and the phase symmetry of the
cw degree of freedom (see below), all such cumulants can be
expressed in terms of these containing at most a single factor
of X,. Expectation values linear in X, are equal to Na times
these expectation values with X, replaced by x=|4,|?, for n
an arbitrary cw degree of freedom so that we need to evalu-
ate expectation values of the form (P"Y"xX), where n,m,k
are non-negative integers whose sum is at most 2 and k= 1.
As shown in the Appendix, such expectation values can be
expressed as (P"Y"x*y=1I,,../Ioo0, Where

L= f dPp"tE f dyy™(1 —y)k NP (13)

where f(P,y) is the free energy defined above. The large N
asymptotics of these integrals can be derived with the
method of steepest decent (see the Appendix), and it has the
general form

S o= Lou(P.y
Lk ~ eNf(P,y)Pn+m+k)—}m(1 _ )—})k<1 n ﬂWlk](V y) ) i (14)

Here ~ signifies asymptotic equality up to an O(1) prefactor
that cancels in the calculations of expectation values.

In calculating the cumulants, the leading O(1) terms in
I, cancel so that

(P Y"x%yy = k(] — 5)¥(linear combination of Is).
(15)

The technical but straightforward calculation of the functions

I,..(P.y) is outlined in the Appendix, and we proceed to
state the results.
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FIG. 1. (Color online) A contour plot of the pulse power fluc-
tuations variance ((¥?)) as a function of the dimensionless param-
eters 7y (inverse temperature) and 7 (gain elasticity). Lighter shades
represent stronger fluctuations and darker weaker fluctuations, ex-
cept the dark blue region in the left part of the figure that designates
parameter values where the pulse is unstable. Contour lines repre-

sent the values (from right to left) 0.2, 0.3, 0.5, and 1 times %2.

It is possible to divide the power fluctuations into two
parts, fluctuations that occur with a given overall power as a
result of the random redistribution of this power between the
various degrees of freedom and those that are a consequence
of the fluctuations in the overall power. These two contribu-
tions correspond to the O(N~!) terms in the two integrations
in Eq. (13). The first contribution that is generated by the y
integration is inversely proportional to |#f|=*(2y—1)y and
is independent of the gain saturation function. It represents
the dominant term in the fluctuations when gain saturation is
so strong that overall power fluctuations are suppressed, that
is, when n—oc. This term is absent in covariances that in-
volve P. The second contribution generated by the P integra-
tion is inversely proportional to |d5¢|= 7+ 735 Using this
information we can calculate the covariance matrix elements
involving at most one factor of X. The values of the five
independent matrix elements are listed in Table I.

The qualitative dependence of the power fluctuations on
the two dimensionless parameters is demonstrated in Fig. 1
that shows the normalized value of ((Y?)) as a function of 7
and v. It is evident that, as expected, the typical fluctuations

are proportional to %, with an O(1) coefficient, when the
parameters are such that the pulse is stable. The power fluc-
tuations grow when the parameters approach the boundary of
the region of stability, where the amplitude of fluctuations
diverges. For a fixed value of 7, this can happen in two
manners: when vy is too small, the pulse becomes unstable

with respect to noise buildup and breaks down with the laser
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reverting to the cw state; and when v is too large, the gain
saturation is too weak to prevent the saturable-absorber
driven growth of a pulse perturbation. Thus, for 7»>8 the
fluctuations first decrease as function of increasing y and
then start increasing as the upper stability boundary is ap-
proached. For fixed y on the other hand, the fluctuations
decrease monotonically for increasing 7, reaching a finite
value as n— .

We now consider the remaining elements of the covari-
ance matrix elements containing two cw factors. These are

(xX2) = ]%«xz» + aX(xx')), (16)

(X X)) = ab{(xx")), (17)

where x=|4,|> and x’" =|i,,,|* for arbitrary cw degrees of free-
dom n# m. Since the x variables are microscopic, the vari-
ance ({(x?)) is O(1) rather than O(N~') and contributes sig-
nificantly in Eq. (16). Its statistics can be deduced from the
fact that the i,’s are (approximately) Gaussian random vari-
ables and that (,,)=0 for cw degrees of freedom because of
the phase symmetry of the equations of motion [Eq. (1)] so

that (x*)={|,|*Y=2(|¢,|*)>=2(P(1-7))? and therefore

() =[P(1-7)F. (18)

The covariance ({xx’)) is actually linearly dependent on
the covariances already calculated, as can be observed by
calculating the cumulants of both sides of the identity P—Y
=X, giving

(Cex")) = ((P2) = 2((PY)) +((Y?)) - ]%,«xz))

1-y \P?
- — y)—. (19)
Qy-Dn-y 2y-1

_(1—?)2( 1
N

T 2y-1

B. Fluctuation-dissipation relations

In equilibrium statistical physics, susceptibilities are lin-
early related to fluctuation covariances and transport coeffi-
cients are linearly related to diffusion coefficients [29] by the
property of detailed balance. These relations can be easily
derived directly from the Gibbs distribution. In our case, we
write the Lyapunov functional as H[|=N(aR[ ]+ BS[¥]),
with R[¢]:—ﬁ2”|¢n|4 and S[]=Tu(P), and let the ther-
modynamic quantities and fluctuation coefficients depend
parametrically on « and (B, with the physical quantities ob-
tained for B=1. In the mode-locked phase the partition func-
tion is given by log Z=NF+0(1) so that

LI i (20)
T~ 2T
dpF = %:—u(ﬁ). (21)

The left-hand equality in Egs. (20) and (21) follows by dif-
ferentiation of the partition function under the integral sign,
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and the definition (6) of the expectation values, and the right-
hand equality from direct differentiation of Eq. (7). The re-
sults obtained for (R) and (S) are actually special cases of the
fact that (k(P,Y,X,)y=k(P,Py,aP(1-¥)) for any function k
of the thermodynamic observables in the thermodynamic
limit that holds since they are self-averaging. Note that R
~ Y;z in the thermodynamic limit since the cw terms in the
sum give an O(ﬁ) contribution.

Taking another derivative of the free energy then gives the
second-order cumulants,

(RS) _ 948)_ aR)

GudpF =5 ; — (23)
(S ap(S)
TyF = = —% (24)

The right-hand equalities in Egs. (22)—(24) are obtained by
replacing the first derivative by its value from Egs. (20) and
(21). In the mixed derivative case there are two possible
replacements that give the Maxwell relation d,(S)=dx(R).
Once more we can use the self-averaging of P and Y in
simplifying the cumulants; in this case it allows us to express
them in terms of the elements of the covariance matrix. For
general functions k; and k, self-averaging implies that

(ki (P,Y)ky(P,Y))) = dpk,dpky((P?)) + (9pk dyky + dyk dpk,)
X<<PY>> + C7Yk13yk2<<Y2>>’ (25)

where the functions on the right-hand side are evaluated as
usual at P=15, Y=15)7. It follows that

(R = (PY)X(YD), (26)
((RS)y = PyTu' (P)X(P?), (27)
(S =T ' (P)((P?). (28)

Thus, Egs. (22)—(24) offer an alternative method to calcu-
late three elements of the covariance matrix derived in Sec.
Il A by taking the parametric derivatives of R and S, &R)
=£TE(}_’(?Y+)7(713), 3S=Tu'(P) 9P, where the d stands for dif-
ferentiation with respect to either parameter. The parametric
derivatives of P and y are obtainable by short calculations
starting from Egs. (8) and (10) and give the susceptibilities

_ Py
ggp=- —2— (29)
n+—2
1-25
2 9P
Iy = —— ", (30)
2y-1 p
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_ Py _
9,P = 2P, 31)
YI(2y-1)
1 2y - P?
aayzf<—7aap+—). (32)
YQ2y-1D\ P T

The relevant elements of the covariance matrix are repro-
duced when Egs. (26)—(32) are substituted in Egs. (22)—(24).

C. Fluctuations in the cw phase

For completeness we also present the power fluctuations
in the cw phase, where power is evenly divided (on average)
between all the laser degrees of freedom. This state is sta-
tionary for y<<y" and metastable for all y> " although for
very large vy it is short lived. The latter case is the self-
starting regime [6,7,15], and our results hold away from this
regime.

Because the saturable absorption is nonlinear, the cw free
energy F.,=f(P.,,0) is independent of y [see Eq. (7)]; it
follows that the cw thermodynamics is independent of 7y
[10]. This is also true for the fluctuations that are therefore
(up to small corrections) those of free randomly forced
modes subject to the gain saturation constraining potential u.
The calculation of the covariance matrix is very similar to
that of the more complicated mode-locked case, and the re-
sulting power variance is

(P ew = (33)

N|Pbe(Pey)|

Since moments including Y are by definition equal to zero in
the cw state Egs. (16)—(19) together with Eq. (33) determine
the remaining nontrivial cumulants ((X*))c,, and ((X,X;))cy-

IV. CONCLUSIONS

The main result of this paper is a complete quantitative
characterization of the Gaussian fluctuations in the overall
pulse and cw power of passively mode-locked lasers. It ex-
tends SLD to the study of steady-state fluctuations and fur-
ther demonstrates the power of this method in the under-
standing of the interaction of noise, nonlinearity, and its
consequences. The analysis reveals deeper consequences of
the close analogy between mode-locked lasers and the equi-
librium statistical mechanics of interacting mode systems. In
particular the analogy led us to identify and prove
fluctuation-dissipation relations for the far-from-equilibrium
laser system.

The results were obtained in the framework of a simpli-
fied mode-locking model. The coarse-grained model pro-
vides a good approximation for the behavior of more realistic
models and experimental systems, but the quantitative details
are model dependent. Nevertheless, several important con-
clusions can be drawn from the qualitative properties of our
results that are likely to hold for a wider class of systems.
First, we point out that the scale of the power fluctuations is
the overall power divided by the square root of the number
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of the active modes that is equal to the cavity roundtrip time
divided by the pulse width. This scale is universal as it fol-
lows from the basic properties of the convergence to the
thermodynamic limit.

Next we observe that the fluctuations are determined by a
further dimensionless quantity, the gain elasticity, in addition
to the parameters that determine the steady state (here a
single parameter). The gain elasticity measures the response
of the amplifier gain to changes in the overall power and
therefore controls the strength of fluctuations in the overall
power. As gain elasticity decreases, overall power fluctua-
tions increase, as well as fluctuations in the pulse power and
cw power. The precise behavior of the gain elasticity de-
pends on the details of the gain dynamics in the amplifier. In
general the elasticity is weak when the gain medium is un-
saturated and increases with the saturation. For a standard
power-law saturation the elasticity increases to a maximal
value in the limit of strong saturation. Further reduction in
the relative fluctuations can then be achieved by increased
pumping or, if possible, noise reduction that increase the
mode-locking parameter.

Third, we find that the overall power and the pulse power
are always positively correlated, while cw power and pulse
power are negatively correlated. This information can in
principle be used to predict and correct for pulse fluctuations
before the arrival of the pulse. On the other hand, cw power
accumulated in different parts of the cavity display positive
correlations.

As in all noise driven systems, the fluctuations diverge as
the parameters approach the boundary of the region of sta-
bility. Close to this boundary, fluctuations cease to be Gauss-
ian; this case can also be studied within the SLD framework
[15], but with more sophisticated methods than those used
here. In particular, the pulse is susceptible to elimination by
a rare event of a large noise fluctuation that drives the laser
to the cw state. Another potential region of invalidity of the
Gaussian distribution is the neighborhood of a critical point
[25] absent in the model studied here but present in more
general laser systems [12]. In either case a full analysis of the
light fluctuations has to take into account the quantum prop-
erties of the spontaneous emission noise [30].

The most serious limitation of the static method used here
to calculate fluctuation properties is that it can only capture
single-time statistics. Many-time statistics, such as timing
and phase jitter can also be naturally studied within SLD,
but, like in statistical mechanics, they require consideration
of the kinetics of the optical wave form that determine the
approach of the system to its steady state in addition to the
properties of the steady state itself. This task is postponed to
future study.
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APPENDIX: STEEPEST-DESCENT EVALUATION OF
COVARIANCE MATRIX ELEMENTS

Here we outline the evaluation of cumulants ((P"Y"xF))
defined in Sec IIl A. The expectation values are calculated
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starting with the definition Eq. (6), fixing the overall power P
and first integrating over the N—2 cw degrees of freedom
other than ¢,; letting Px=|4,|%, and the pulse degree of free-
dom ¢,, with NPy=|i,|*, we obtain

Lok = f dPdydx P kymk x exp(N{“TPZy2 —u(P)

+log[P(1-y-3)]}).

where the term exp{N log[ P(1-y—+)]}, the result of the N
—2 integrations, is equal to the cw-state partition function up
to an irrelevant O(1) prefactor [10]. The x integration then
leads to Eq. (13) defining I,,;. The remaining integrals over
y and P are then evaluated for large N using the standard and
well-known steepest-descent method, otherwise known as
the Laplace integral method [31]. It is based on approximat-
ing the integrand with its Taylor series near the maximum of

(A1)

the exponential at (P,5). We choose to perform the integra-

PHYSICAL REVIEW E 79, 031126 (2009)

tion in two steps. The result of the y integration is 1,
= [dPl,,;(P), with

A 21 o=
Inm P) = —eNf(P,y)Pn+m+k< (1 =7 k
BN Moy ey

LA a-vTs +0(L))
N 2o ) N))

(A2)
where the - -- stand for several other O(ZLV) terms that cancel

in the evaluation of the cumulants.
The 0(11;,) term in Eq. (A2) is carried into the next inte-

gration, over the P variable, after which P is replaced by P,
and a similar O(IIT,) is generated giving

- A" =) ) . ap{ P (PY 1 - 5(P) MY 5
20ay*f(P.5)| 2|dpp(P)|

nmk

(A3)
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